
580 KSME International Journal, Vol. 15 No.5. pp. 580-591, 2001

Fuzzy-Sliding Mode Control of a Polishing Robot Based on
Genetic Algorithm
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This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy

inference method based on a genetic algorithm. Using the method, the number of inference rules

and the shape of the membership functions of the proposed fuzzy-sliding mode control are

optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are

updated by the gradient descent method. It is further guaranteed that the selected solution

becomes the global optimal solution by optimizing Akaike's information criterion expressing the

quality of the inference rules. In order to evaluate the learning performance of the proposed

fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the

polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are

automatically selected by the genetic algorithm and the trajectory control result is similar to the

result of the fuzzy-sliding mode control which is selected through trial error by an expert.

Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy­

sliding mode controller using the proposed self tuning fuzzy inference method based on the

genetic algorithm.
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Control, Gradient Descent Method, Akaike's Information Criterion, Polishing

Robot

1. Introduction

To overcome the problems of tracking error

related to unmodeled dynamics involved in the

operation of industrial robots, many researchers

have used sliding mode control, which is robust

against parameter variations and payload changes

(Dong and Shifan, 1996; Fruta and Tomiyama,
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1996; Harashima, et al., 1986; Hashimoto, et al.,

1987; Lee and Aoshima, 1993; Siotine, 1985;

Young, 1978). Lee and Aoshima (1993) proposed

a sliding mode control algorithm in which

nonlinear and unmodeled dynamic terms were

considered as external disturbances. A sliding

mode control algorithm with two dead zones was

proposed to reduce chattering (Lee and Shin,

1997; Lee, et al., 1998). However, these algorithms

could not completely reduce the inherent

chattering which was caused by excessive

switching inputs around the sliding surface.

In a previous study, a fuzzy-sliding mode con­

troller was designed to reduce inherent chattering

of sliding mode control by fuzzy rules within a

pre-determined dead zone (Lee and Go, 1997).
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Fig. 1 Polishing robot with two degrees of freedom
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as shown in Fig. 1 (Go and Lee, 1998; Lee, et al.,

1999a; 1999b; 2000). The simplified dynamic

equations of the polishing robot can be written as

follows (Go and Lee, 2000; Go, et al., 1999):

JiOi+BJ)i+Fi=kiUi (1)

Ji is the summation of all linear terms in the
moment of inertia of link i and the driving motor.

B, is the equivalent damping coetlicient from the

motor, reduction gears, and the viscous friction of

link i. The disturbance term F, is the summation

of the nonlinear terms: the inertia moments, the

Coriolis and centrifugal forces, the gravity force,

and the Coulomb friction force. k, is a constant to

be determined from the motor torque coefficient,

the reduction rate of gears, and the armature

resistance. u, is the control input voltage.

In order to reduce the inherent chattering of the

sliding mode control, a fuzzy-sliding mode con­

trol algorithm was proposed (Lee and Go, 1997).

A control input for the fuzzy-sliding mode con­

troller can be easily obtained from the simplified

dynamic Eq. (1). In order to satisfy the existence

condition of a sliding mode, when the unmodeled

nonlinear terms are replaced by disturbances, a

control input is proposed as follows (Lee and Go,

1997):
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In a previous study, a two-axis polishing robot

to automate the polishing process was developed

2. Fuzzy-Sliding Mode Control

Trajectory tracking experiments showed that

chattering could be reduced prominently by the

fuzzy-sliding mode controller, and that the

proposed controller was robust to changes in

payload. However, the number of inference rules

and the shape of the membership functions of the

fuzzy-sliding mode controller were necessarily

determined through trial and error by an expert in

robot systems. Also, it could not be guaranteed

whether the selected inference rules were the

global optimal solution, since the expert used trial

and error to determine the inference rules.

This paper proposes a self tuning fuzzy

inference method using a genetic algorithm. A

genetic algorithm is a search algorithm based on
the mechanics of natural selection, genetics, and

evolution. One of the main advantages of genetic

algorithm is its ability to obtain a global optimal

solution using operators such as crossover and
mutation (Goldberg, 1989). Using a genetic

algorithm, the number of inference rules and the

shape of membership functions of the fuzzy­

sliding mode controller are optimized without an

expert in robotics. Also, the fuzzy outputs are

updated by a gradient descent method. It is also
guaranteed that the selected inference rules be­

come the global optimal solution by optimizing

Akaike's information criterion (Akaike, 1974;

Lin and Lee, 1996) expressing the quality of the

inference rules. In order to evaluate the learning

ability and trajectory tracking performance of the

proposed fuzzy-sliding mode controller using a

genetic algorithm, a trajectory tracking

simulation of a polishing robot is carried out, and

the controller is compared with a fuzzy-sliding

mode controller using the trial and error method

as proposed in previous studies. To evaluate the

tracking performance in the event of payload
changes, the trajectory tracking simulation of the

polishing robot under a change of payload is

carried out by the proposed fuzzy-sliding mode

control.
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Fig. 2 Phase plane with a pre-determined dead zone
around the switching line

<Pn= {rli if Si~di >0
ru if si8di < 0

where <PIli and <Pri are feed-forward control input
terms which ensure the existence condition of a

sliding mode, to compensate for unfavorable

effects due to the desired angular velocity iJdi and

the angular acceleration adi for trajectory

tracking. <PfUZZY is the control input term for
compensating disturbances. In Eq. (2), the limit

values of the switching parameter <Pai, <PfJi, and <Pri
can be derived from the existence condition of a

sliding mode. <Pfuzzy is selected by fuzzy rules

within a pre-determined dead zone as shown in
Fig. 2.

The selected fuzzy input variables are the state

value in the phase plane and its rate of change

around the switching line. That is, the fuzzy

inputs are Sfi and Sfi, which are the fuzzified
variables of the state value si and the change of

the state value Si, respectively. The fuzzy output

variable is Un, which is the fuzzified variable of

<PfUZZY for compensating disturbances. The fuzzy
rules are established from a state value and a

change .rate of the state value on the phase plane.

The control input term <Pfuzzy for compensating
disturbances is determined by the selected fuzzy

rules and defuzzification (Lee and Go, 1997).

Therefore, the fuzzy-sliding mode controller can

reduce inherent chattering because the controller

transforms the excessive switching input around

the sliding surface into a small optimal control
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Fig. 3 String and membership function

input.

However, the number of inference rules and the

shape of the membership functions of the fuzzy­

sliding mode controller should be determined

only through trial and error by an expert in

robotics. In that case, it cannot be guaranteed

whether the selected inference rules are the global

optimal solution or not.

3. Self Tuning Fuzzy Inference
Method by the Genetic Algorithm

3.1 Selection of individuals and a fitness
function

In order to optimize the number of inference

rules and the shape of the membership functions

of the fuzzy-sliding mode controller, a self tuning

fuzzy inference method using a genetic algorithm

is proposed in this study. In the genetic algorithm,

a solution candidate is expressed by binary

coding. Thus, the number and shape of the mem­

bership functions are expressed in terms of a

string consisting of O's and l's as shown in Fig. 3.

In Fig. 3, if a bit of the string is I, this bit has a

membership function, and the bit becomes the

center position of the membership function. If a

bit of the string is 0, this bit does not have a

membership function. Therefore, the width of

each membership function is defined as the length

between the centers of the neighboring two mem­

bership functions. To set the membership

functions on both sides of the universe of

discourse of fuzzy input variables, the first and

last bits of a string are set to I.

The candidate for a solution expressed by the

string is called an individual. A set of individuals

is called a population. The individuals are deter­

mined by uniform random numbers. The fitness

value of each individual is calculated by the
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XI ~

Fig. 4 Height method

rules. A Z1 and At:! are the membership function in
the antecedent part, while B, is the membership
function in the consequent part.

Defuzzification is a mapping from a space of
the fuzzy control actions defined over an output
universe of discourse into a space of nonfuzzy
control actions (Lin and Lee, 1996; Mohammad,
et al., 1993; Robot, 1994). This process is neces­
sary because in many practical applications crisp
control action is required to actuate the control
system. This study uses the height method for
defuzzification because it is simpler than the
center of gravity method commonly used as tech­
nique for defuzzification (Go and Lee, 2000; Lee
and Go, 1997; Li and Lau, 1989; Mohammad, et
al., 1993; Robot, 1994). The defuzzification pro­
cess is shown in Fig. 4. A membership grade uh

and ([)2 are determined by RULE I and RULE 2,
respectively. The consequent part is expressed by
a real number YI and Y2. The defuzzified result is
simply derived as follows:

selected fitness function, which determines the
probability for selecting an individual being acted
on by the three genetic operators: reproduction,
crossover, and mutation.

In the genetic algorithm, to evaluate the fitness
of each individual in the population, Akaike's
information criterion function AlC (Akaike,
1974; Lin and Lee, 1996) is employed, and the
fitness function FIT is defined as follows (Go
and Lee, 2000; Go, et al., 1999):

AlC( Vi)=Ni log(ERROR)+2Mi (3)
n

ERROR = "E,( 8i(t) - 8di)2 (4)
t=o

FlT( Vi)=maxj(AlC( Vi»-AlC( Vi) (5)

where N, is the number of fuzzy input variables,
and M i is the number of membership functions in
each individual Vi. AlC( Vi) is the information
criterion of the ith individual Vi. ERROR is the
summation of the square of trajectory errors of
the difference between a desired trajectory 8di and
a measured trajectory 8i(t). FlT( Vi) is the fit­
ness value of the Vi. maxj(AlC( Vi» is the
largest value among all information criteria from
the initial generation to the jth generation.

The information criterion function AlC( Vi)
shows the overall capability for learning, i.e., the
tracking performance for a desired trajectory and
the number of inference rules. The smaller the
information criterion is, the smaller the number of
the inference rules and the trajectory tracking
error are. Therefore, the number and shape of the
membership function maximizing the fitness in a
string can be obtained by using the proposed self
tuning fuzzy inference method.

([)i= Ail(XI) I\AI2(x2)
n

"E, ouv,
y(k)= i=~

"E, to,
i=O

(6)

(7)

3.2 Learning of the consequent part by the

gradient descent method

In fuzzy logic, the input-output relation of a
system is expressed as a collection of IF-THEN
rules in which the antecedent and consequent part
involve fuzzy variables. For example, if Xl and X2

are fuzzy input variables and y is the output
variable, the relation among Xl, X2, and y may be
expressed as

RULE i : If Xl is Ail and X2 is At:!, then y is B;

where i(i=l, , n) is the number of inference

All the universes of discourse of the fuzzified
variables have specified universes which are
performed by a fuzzifier (Lin and Lee, 1996). The
fuzzifier performs the function of fuzzification,
which is a subjective valuation to transform
measurement data into valuation of a subjective
value. Hence, it can be defined as a mapping from
an observed input space to labels of fuzzy sets in
a specified input universe of discourse. The range
of variables s.; Si, and #fUZZY are scaled to fit the
universe of discourse of fuzzified variables Sfi, Sfi,

and Ufi by using the scaling factor Kl, &, and Ks;
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Fig. 5 Flow chart of selection of fuzzy rules using genetic algorithm

(8)

and payload changes is unknown. Therefore, the

cost function H is redefined as follows:

aH
Yi(t+ 1)=Yi(t)+LlYi=Yi(t)- /3-:1­

UYi

(9)

where B(Tk) is a desired trajectory, and B(k) is a

measured trajectory. If B(k) approaches B(Tk), y(k)

approaches a desired fuzzy output y(Tk).

Using a gradient descent method, the real

number y: of the consequent part is adjusted by

an amount LlYi to be proportional to the negative

gradient H at the current location:

respectively (Hwang and Lin, 1992; Lee, 1990;

Lee and Go, 1997). However, these scaling factors

are determined only through trial and error by an

expert in robot systems. In order to solve this

problem, this study uses the gradient descent

method (Lin and Lee, 1996). The fuzzy outputs of

the consequent part are adjusted by the updating

law derived from the gradient descent method.

To update the real numbers y: of the conse­

quent part, this study defines a cost function H,
which measures the fuzzy inference error:

H =-.L(y(Tk) _ y(k»)2

2

where y(Tk) is a desired fuzzy output for the kth

fuzzy inputs, and y(k) is an output of fuzzy

inference for the same kth fuzzy inputs. However,

in operating a polishing robot, the kth desired
fuzzy output y(Tk) against parameter variations
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Table 1 System parameters of the polishing robot

585

Wni(rad/sec) ~i Ji(Kg m2) Bi(Kg m2/s)

Axis A 12 0.4 0.0114 0.10944

Axis C 12 0.1 0.0991 0.23784

Table 2 Limit values of switching parameters by using the signal compression method---- Axis C Axis A

c. cl=4 (cl<5.4) c2=4 (C2< 7.52)

all < -9.333, Slel >0 a12< -13.2, s2e2>0
al

a:n< -9.333, slel<O l1'.!2>-13.2, s2es<0

/3i
/3ll<9.0, slfA>O /312<7.05, s28z>0

/321>9.0, slfJr<O /322>7.05, s28z<0

r.
1'll< 1.667, s1Bl>O 1'12<0.9375, S2~>0

)'21>1.667, slBl <0 1'22>0.9375, S2~<0

NB NM ZOPM PB

FUZZY~
input~

Fig. 6 Membership function determined by trial and
error

where t is the number of iterations oflearning and

TJ is a positive number called the learning constant
which determines the rate of learning.

3.3 Learning procedure for the genetic

algorithm

The learning procedure of the genetic algorithm

consists of the following steps as shown in Fig. 5:

[step I] Establish a base population of

individuals: The individuals that constitute a base

population are determined by uniform random

numbers. The individual is expressed in terms of
strings consisting of O's and I's as shown in Fig.

3. To set the membership functions on both sides

of the universe of discourse of each input variable,

the first and the last bit of a string are set to I. The

number and shapes of the membership function in

the antecedent part are determined according to

the string of each individual.

[step 2] Determine the fitness value of each

individual using Eq. (5): To evaluate the fitness

value of all individuals of a current population, a

trajectory tracking simulation of the polishing

robot is carried out by the proposed fuzzy-sliding

mode control. These procedures can be

implemented according to the steps from [step 2­
I] to [step 2-4].

[step 2-1] The simulation is carried out with an

individual selected in the current population. To

determine the fuzzy control output <PftJ.ZZY for
compensating disturbances, the membership

grades and the output of the fuzzy inference are
obtained by using Eqs. (6) and (7), respectively.

[step 2-2] During the simulation, the real number

Yi of the consequent part is updated by using Eq.

(12). This step is continued until the following

condition is achieved:

1ERROR(t)-ERROR(t-i) 1<8 (13)

where 8 is a threshold value to judge the conver­

gence of the tracking error ERROR as shown in

Eq. (4).

[step 2-3] If Eq.(i3) is satisfied, the information

criterion of the selected individual is calculated
by using Eqs. (3) and (4). The fitness value of the

selected individual is calculated from the
calculated information criterion by using Eq. (5).

[step 2-4] [step 2] has to be applied to all

individuals in a current generation.

[step 3] The fitness value of each individual is

used to determine the probability of selection.
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Fig. 7 Angles of axis C and A by the fuzzy-sliding mode control based on trial and error
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Fig. 8 Velocity of axis C and A by the fuzzy-sliding mode control based on trial and error

[step 4J A pair of mates is selected from the
population according to the probability of selec­

tion of the selected individual by roulette wheel

selection.

[step 5J To generate the new individuals, repro­

duction, crossover, and mutation are used. Re­

production directs the search toward the best

existing individuals. Crossover creates new

individuals by mating current individuals.

Mutation introduces any new information into

the population at the bit level. These three genetic

operators are applied repeatedly until the new

individuals take over the entire population.

[step 6J The new population is produced by [step

4J and [step 5].

[step 7J The processes from [step 2J to [step 6J

are repeated until the number of generation ex­

ceeds the predetermined value.

Therefore, as these steps are repeated,

individuals of the new population have a higher

fitness than those of the previous generation. The

flow chart for selecting fuzzy rules using the

genetic algorithm is shown in Fig. 5.

4. Simulation

4.1 Evaluation of the learning performance

The developed polishing robot always has

lorge contact force changes due to removal of tool

marks and chattering as a result of rotating a

polishing tool (Go and Lee, 1998; Lee, et aI.,

1999a; 2000). Therefore, unless these disturbances

of the polishing robot are compensated for prop­

erly, control performance cannot be expected to

be satisfied. The proposed fuzzy-sliding mode

controller using the genetic algorithm can com­

pensate for these disturbances. In order to evalu­

ate the learning ability and trajectory tracking

performance of this controller, a trajectory

tracking simulation of the polishing robot is car­

ried out. The proposed controller is also

compared with the fuzzy-sliding mode controller
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Table 3 Fuzzy rules determined by trial and error
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Table 4 Initial conditions for the genetic algorithm

Initial conditions Value

Total number of individuals 20

Length of individual 13

Mutation probability 0.01

Crossover probability 0.65

Number of generation 25

Threshold value 0.00001

Fig. 10 Membership function determined by the
genetic algorithm

using trial and error that was proposed in a

previous study.

First, the trajectory tracking simulation is car­

ried out by the fuzzy-sliding mode controller

proposed in the previous study. To determine the

switching parameters I/!ai, I/!Pi, and I/!-,; in Eq. (2),

the values of the inertia Ji and the damping

coefficient B, of a robot system are estimated by

the signal compression method which identifies

unknown parameters of a system (Lee and

Aoshima, 1989). By using the signal compression

method, the unknown parameters of the polishing

robot are estimated as listed in Table I (Lee, et

aI., 1999a; 2000). When the slopes of the switching

line are Cl =4 and c2=4, the limit values of the

switching parameters that satisfy the sliding mode

existence condition are derived as listed in Table

2. The number of inference rules and the shape of

the membership functions in the antecedent part

are determined through trial and error by an

expert in robot systems. The selected inference

rules are listed in Table 3 and the selected mem­

bership function is shown in Fig. 6. The selected

scaling factors are K1=40, Kz=30, &=0.2 for

axis C and Kl=45, Kz=35, &=0.15 for axis A.

The simulation results are shown in Figs. 7 and 8.

Second, the trajectory tracking simulation is

carried out by the fuzzy-sliding mode control
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Table 5 Fitness of total individuals of entire generations

Individual Fitness E Criterion C

Axis C I Axis A Axis C Axis A Axis C Axis A

1000000000001 22.00 22.08 14.46 13.81

1000000000011 20.00 20.08 16.46 15.81

1000000000101 19.98 20.08 14.48 15.81

... ... ... ... ...
1000001000001 20.01 20.09 16.45 15.80

... ... ... ... ...
1111111111011 2.00 2.00 34.46 33.89

1111111111101 2.00 2.00 34.46 33.89

1111111111111 0.00 0.00 36.46 35.89

....... 60 .-, 60<Iol <Iol
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Fig. 11 Angles of axis C and A by the fuzzy-sliding mode control based on the genetic algorithm
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Fig. 12 Velocity of axis C and A by the fuzzy-sliding mode control based on the genetic algorithm

with a self tuning fuzzy inference method based

on the genetic algorithm. The initial conditions

for the genetic algorithm are listed in Table 4. In

order to determine the number of inference rules

and the shape of the membership functions for the

fuzzy-sliding mode controller, the learning pro-

cedure described in Section 3.3 is used. Figure 9

shows the fitness value according to the progress

of each generation and also shows that

individuals of the new population have higher

fitness than those of the previous generation as the

learning steps are repeated. The shape of the
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Fig. 13 Angles of axis C and A by the proposed fuzzy-sliding mode control with 40N-polishing force
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Fig. 14 Velocity of axis C and A by the proposed fuzzy-sliding mode control with 40N-polishing force

membership function determined by the learning

procedure is shown in Fig. 10. The selected

inference rules become the global optimal solu­

tion by optimizing Akaike's information criteri­

on.

In order to prove that the fuzzy rules deter­

mined by the genetic algorithm converge to a

global optimal solution, total individuals of entire

generations are simulated as listed in Table 5. The

total number of individuals of each axis are 211

and the optimal solution obtained by the total

search is the same as that obtained by the genetic

algorithm. Therefore, it is guaranteed that the

selected inference rules become the global optimal

solution.

The simulation results of the proposed

algorithm are shown in Figs. 11 and 12.

Comparing Fig. 11 with Fig. 7, the trajectory

tracking simulation shows that the optimal fuzzy

inference rules are automatically selected by the

genetic algorithm and the trajectory control result

is similar to the result of the fuzzy-sliding mode

control which is selected through trial and error

by an expert. Therefore, a designer without expert

knowledge of robot systems can design the fuzzy­

sliding mode controller using the proposed self

tuning fuzzy inference method based on the

genetic algorithm.

4.2 Robustness
In the polishing process, the magnitude of the

polishing force changes according to the mesh of

a polishing sheet and the state of the polished die

surface. Generally, it is known that the proper

polishing force is 10 N to 20 N (Lee, et al.,

1999a). The polishing force according to the state

of the polishing progress may be changed. There­

fore, the controller should be robust against

changes in the polishing force.

To evaluate the robustness of the proposed

controller, the trajectory tracking simulation of

the polishing robot with a 40 N-polishing force is
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carried out by the proposed fuzzy-sliding mode
control based on the genetic algorithm.

The polishing tool of axis A is equipped with a
40 N payload. The simulation results are shown
in Figs. 13 and 14. It is shown that the results are
almost the same as Figs. II and 12. Therefore, it
is proved that the proposed algorithm is robust to
changes in payload.

5. Conclusion

This study proposed a fuzzy-sliding mode con­
troller using a self tuning fuzzy inference method
based on a genetic algorithm. Using this method,
the number of inference rules and the shapes of
the membership functions were optimized without
an expert in robotics. The fuzzy outputs of the
consequent part were updated by the gradient
descent method. Also, it was guaranteed that the
selected inference rules become the global optimal
solution by optimizing Akaike's information cri­
terion expressing the quality of the inference
rules. To investigate the learning ability and
trajectory tracking performance of the proposed
fuzzy-sliding mode controller using the genetic
algorithm, a trajectory tracking simulation of a
polishing robot was carried out, and the control­
ler was compared with the fuzzy-sliding mode
controller using trial and error. Trajectory
tracking simulations showed that the optimal
fuzzy inference rules were automatically selected
by the genetic algorithm, and that the trajectory
control result was similar to the result of the fuzzy­
sliding mode control which is selected through
trial and error by an expert. Therefore, a designer
without expert knowledge of robot systems can
design the fuzzy-sliding mode controller by using
the proposed self tuning fuzzy inference method
based on the genetic algorithm. Also, to evaluate
the tracking performance under payload changes,
the trajectory tracking simulation of the polishing
robot with a polishing force of 40 N was carried
out by the proposed fuzzy-sliding mode control
based on the genetic algorithm. These simulation
results showed that the proposed algorithm can
provide reliable and robust tracking performance.
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